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ABSTRACT

Most of the classification algorithms discover flat Fuzzy Classification Rules (FCRs) in ‘If-
Then’ form. The knowledge discovered in the form of FCRs allows us to deal with vague, 
inexact and incomplete premises, however, it ignores exceptions and hierarchies that may 
exist in data. The simple FCRs enlarge the size of Rule Bases (RBs) with the presence 
of duplicate clauses that can be removed by arranging the rules in a hierarchical fashion. 
Moreover, such rules infer incorrect conclusions in the presence of exceptional conditions. 
This paper proposes the discovery of accurate, interpretable and interesting rules in a 
novel form named as Fuzzy Hierarchical Censored Classification Rules (FHCCRs) using a 
Genetic Algorithm approach. The GA design for discovering FHCCRs includes designing of 
suitable encoding scheme, fitness function and genetic operators. The suggested approach 
works in three phases: i) fuzzifying a dataset in a pre-processing step, ii) applying a genetic 
algorithm for discovering FHCCRs and iii) merging FHCCRs into bigger hierarchies in 
a post-processing step. The proposed approach is applied to five benchmark datasets. It 
successfully discovers FHCCRs which contain exceptions (also referred as censors) as well 
as hierarchies. The knowledge discovered in the form of FHCCRs enriches rule bases in 
respect of interpretability and interestingness.

Keywords: Classification rule discovery, fuzzy 
censored classification rules (FCCRs), fuzzy 
hierarchical classification rules (FHCRs), fuzzy 
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INTRODUCTION

In real world problem domains, a machine 
has to make predictions using inadequate, 
vague and uncertain information. Fuzzy 
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Rule Based Systems (FRBSs) are proficient systems for reasoning with ambiguous, 
imprecise and/or incomplete information (Zadeh, 1996). Most of the FRBSs consist of 
Fuzzy Classification Rules (FCRs) that ignore hierarchical relationships among the data/
class labels. Such conventional FRBSs are not suitable for domains, where knowledge can 
be better expressed at various levels of abstraction. Therefore, researchers have suggested 
knowledge structures like Hierarchical Production Rules (HPRSs) (Al-Maqaleh & 
Bharadwaj, 2005; Bharadwaj & Saroj, 2009; Bharadwaj & Kandelwal, 2007), Hierarchical 
Censored Production Rules (HCPRs) (Bharadwaj & Saroj, 2010; Bharadwaj & Jain, 1992; 
Jain & Bharadwaj, 1998) and Fuzzy Hierarchical Censored Production Rules (FHCPRs) 
(Neerja & Bharadwaj, 1996) to support the discovery of hierarchical fuzzy classification 
rules.

While designing hierarchical classification systems, we need to consider variable 
certainty and specificity as the two aspects of variable precision logic. A system that gives 
more certain answers given more time (resources) is called a variable certainty system and 
a system that gives more specific answers given more time (resources) is called variable 
specificity system (Michalski & Winston, 1986). Certainty refers to the degree of belief in 
a conclusion and specificity refers to the degree of details contained in a Rule Base (RB). 
The two aspects of variable precision logic (certainty and specificity) are associated with 
accuracy and interpretability - the two fundamental characteristics of classifiers/RBs in data 
mining. Accuracy is the capability of a RB to closely represent the real-world knowledge 
whereas interpretability of a RB is the power to state the behavior of a real system in an 
interpretable way (Gacto et al., 2011). In this context, accuracy provides a measure of 
certainty while specificity relates to interpretability. 

Accuracy and interpretability are indeed important performance monitoring metrics but 
are not sufficient to measure the real interestingness of a RB. A RB is considered interesting 
if the knowledge represented by it is not only formerly unknown but it is also in contrast 
to the original beliefs of its users (Kontonasios et al., 2012). Although interestingness is 
a subjective term, yet unexpected and exceptional knowledge is considered interesting. 
Discovery of exceptions is interesting because exceptions are unusual conditions that 
contradict the prior knowledge about the domain, add curiosity and improve the quality of 
decision making in those rare circumstances when the default or generalized rules cease 
to work. Exceptions, also termed as censors in the literature (Bharadwaj & Al-Maqaleh, 
2007a), have low support, and therefore, it is not possible to discover exceptions using the 
typical classification rule discovery methods. Most of the classification algorithms focus 
on the generality of the knowledge discovered, whereas exceptions make rules specific.

In this paper, we propose a genetic algorithm approach to discover Fuzzy Hierarchical 
Censored Classification Rules (FHCCRs) which are the integration of Fuzzy Censored 
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Classification Rules (FCCRs) and Fuzzy Hierarchical Classification Rules (FHCRs) 
(Bala & Ratnoo, 2018). The proposed system discovers accurate and interpretable fuzzy 
classification rules. In addition, these rules are interesting and have the ability to make 
predictions with variable certainty and specificity. We have employed two quantitative 
measures, the degree of subsumption and coefficient of similarity, to determine the 
hierarchical relationships in FHCCRs. The proposed approach is tested on benchmark 
data sets from the UCI machine learning repository. The approach initially generates FCRs 
which are, subsequently, converted into FHCCRs by appending exceptions/censors and 
hierarchies.

The rest of the paper has the following structure. Second part describes the supporting 
knowledge structures for discovering hierarchical rules with exceptions/censors and the 
related work to contextualize this research. Third  part describes the proposed system to 
discover FHCCRs. It includes the fuzzification process, GA design, and a post-processing 
scheme to merge individual FHCCRs. It also explains the concepts of the degree of 
subsumption and degree of similarity. The suggested approach is employed in experimental 
design followed by the results obtained and lastly, conclusion and future scope of this 
research have been discussed.

RELATED WORK

Intelligent and reasoning based systems have to work in an environment of uncertainty and 
vagueness. Hence, the Rule Bases (RBs) of these systems consist of Fuzzy Classification 
Rules (FCRs). Researchers have been working to make these rule bases more concise and 
useful by accommodating exceptional clauses and hierarchies in these rule bases. This 
section describes novel rule structures and takes account of the research carried out for 
discovering knowledge in these various advanced rule forms to create RBs for intelligent 
systems.

Fuzzy Censored Classification Rules

Exceptions (also referred as Censors in this work) are the rare conditions which change 
the behavior of a default rule. Exceptions/ Censors pertain to limited instances in data 
and, hence, often get ignored as machine noise, if not tackled separately. An FCCR is a 
combination of an FCR and a Censor Production Rule (CPR) (Michalski & Winston, 1986). 
FCCRs have discussed in detail in Bala (2012). 

FCCRs cover one aspect of variable precision, logic, i.e., variable certainty, but 
specificity remains constant here. Next Section describes FHCCRs which support variable 
specificity also in drawing conclusions.
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Fuzzy Hierarchical Censored Classification Rules

Fuzzy Hierarchical Censored Classification Rules (FHCCRs) are the rules that contain 
censor conditions as well as hierarchical information. An FHCCRs is represented as:

If P is X Then CkUnless E is Y: Ck
’

Generality [Cg]

Specificity [Cs1, Cs2] 

Here, ‘E’ represents the censor conditions, Ck represents the rule class, Cg is the general 
class and Cs1, and Cs2 are the specific classes. The rule class Ck may change to Ck

’ when 
the censor condition E is true. The general class represents the most general concept and 
specific classes show the more specific concepts in the hierarchies. The following real 
world example shows the illustration of FHCCRs. 

/* Level 0*/
If (S is household servant for family F) Then (S does household_work) Unless (S is 
Sick or S is on leave: S does not work)  Generality []  // The Rule Class itself 
is the most General class
Specificity [S cooks for family F, S drives for family F]

/* Level 1*/
If (S has good cooking skills) Then (S cooks for family F) unless (Family F is outside: 
S does not cook for family F) Generality [S does household_work] Specificity [S cooks 
breakfast, S cooks lunch, S cooks dinner]
If (S has good driving skills) Then (S drives for family F) Unless (S is defaulter: S 
does not drive for family F)
Generality [S does household_work] Specificity [S drives bike, S drives car]

/* Level 2*/
If (time is morning) Then (S cooks breakfast) Unless (Family F wakes up late on 
Sundays: S does not cook breakfast) Generality [S cooks for family F] Specificity[]
If (time is noon) Then (S cooks lunch] Unless (Family F eats out: S does not cook lunch)
Generality [S cooks for family F] Specificity[]
If (time is night) Then (S cooks dinner] Unless ()
Generality [S cooks for family F] Specificity[]
If (S travels short distance) Then (S drives bike) Unless ()
Generality [S drives for family F] Specificity []
If (S travels long distance) Then (S drives car) Unless ()
Generality [S drives for family F] Specificity []
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The above FHCCRs can further be merged into a single tree as shown in Figure 1. The 
root node in a FHCCR tree signifies the most general class and any child node is a specific 
case of its parent node. As we traverse towards the leaf nodes, the classes become more 
and more specific. Censors may be present at any level in the hierarchy.

Figure 1. An example FHCCRs tree
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Censors present at upper levels in the hierarchy are inherited at the lower levels as 
well. Since each rule in the hierarchy inherits all the properties of its parent FHCCR, it 
is not required to list all such properties repetitively. Hence, in the tree representation, 
redundancy is minimized in the listing of the properties. The solid circles represent the 
classes and solid arrows denote the properties. Censor conditions are represented along 
the dashed lines and dashed circles show the classes when censor/exception condition(s) 
is/are satisfied. 

For discovering the best set of FHCCRs, one needs to search through all possible 
candidate FHCCRs for a dataset. In this context, it is an optimization problem that can be 
solved using a Genetic Algorithm. Applying an approach for discovering FHCCRs requires 
an evaluation/fitness function to guide the search towards an optimal solution. Therefore, 
we need to quantify the goodness of hierarchies. For this purpose, we have used degree of 
subsumption and coefficient of similarity- two quantitative measures- to decide about the 
levels of classes in the hierarchical framework (Al-Maqaleh & Bharadwaj, 2005; Bharadwaj 
& Saroj, 2010; Bharadwaj & Al-Maqaleh, 2007b). Degree of subsumption decides the 
hierarchical levels (Generality/ Specificity) among classes. If Class Ck subsumes class 
Cs then Ck is more general class than Cs, i.e. Cs is the specific class of Ck. Coefficient of 
similarity gives more comprehensible results if the degrees of subsumption between classes 
Ck and Cs are equal both ways. These measures are explained in detail in the proposed 
system.
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Rule Mining using Genetic Algorithms

Genetic algorithms are random but guided search methods for solving complex optimization 
problems. These start with a random population of candidate solutions and apply genetic 
operators (selection, recombination and mutation) to form improved solutions from the 
better fit parents in successive generations by following Darwinian theory of evolution. The 
possible classification rules that can be learned from a dataset can be enormously large. 
Finding an optimal rule set that can perform effective classification is no less a challenging 
task. GAs, being global optimization tool, have been extensively used for classification rule 
mining (Freitas, 2002a; Freitas, 2002b). The block diagram for discovering classification 
rules is given in Figure 2.

Research for Discovering Knowledge in Various Rule Forms

FCRs have demonstrated their ability in a wide spectrum of applications in the domain of 
control (Palm et al., 1997), modeling (Pedrycz, 1996), and data mining problems (Ishibuchi 
et al., 2005b; Kuncheva, 2010). Therefore, there have been many attempts to discover 
FCRs from real-valued datasets (Cordón et al., 2000; Fernández et al., 2009; Herrera, 
2008; Ishibuchi et al.,1995; Ishibuchi et al., 2005a; Ishibuchi et al., 2005b; Ishibuchi et al., 
2011; Mendes et al., 2001). Most of these approaches discover the knowledge at a single 
conceptual level that results into RBs of large size. It may increase the accuracy of the RB 
but influences the interpretability adversely. 

Figure 2. Block diagram of GA for discovering Classification Rules
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Accuracy and interpretability are conflicting criteria; therefore, researchers depend on 
achieving the best trade-off between accuracy and interpretability. Several efforts have 
been made to reach an acceptable trade-off between accuracy and interpretability (Bala & 
Ratnoo, 2016; Gacto et al., 2011; Ishibuchi et al., 1997; Ishibuchi et al., 2001; Ishibuchi et 
al., 2011; Sanz et al., 2010). Ishibuchi and colleagues (1997, 2001, 2005a, 2005b & 2011) 
had proposed a GA for rule selection problem that tried to maximize accuracy and minimize 
the number of rules. In addition, multi-objective evolutionary algorithms have also been 
suggested for rule learning problems. These approaches discover non-dominated Pareto 
optimal solutions by considering accuracy and interpretability (in terms of the number 
of rules and the number of antecedent conditions per rule) as the optimization criteria 
(Ishibuchi et al., 1997; Ishibuchi et al., 2001). All these approaches discover knowledge 
in the form of FCRs which have the following shortcomings:

• FCRs severely fragment the knowledge, thereby, resulting in a large number of 
rules.

• FCRs, as an underlying rule structure for discovering classification rules, do not 
exhibit the two aspects of variable precision logic, i.e., variable certainty and 
variable specificity.

• FCRs simply ignore the exceptions as a noise and, hence, are unable to cope with 
exceptional/unusual conditions.

The problem of discovering flat classification rules has been extensively studied 
in the area of data mining and machine learning (Freitas, 2008). Hence, in the past few 
decades, discovery of the Hierarchical Classification Rules (HCRs) has become the 
priority of researchers in field of rule mining (Cerri et al., 2013; Cerri et al., 2012; Davies 
et al., 2007; Rousu et al., 2006; Secker et al., 2007; Secker et al., 2010; Sun et al., 2004; 
Sun & Lim, 2001; Tsumoto, 2003). A knowledge base organized in a hierarchical form is 
not only interpretable, it can also make predictions at multiple levels of abstractions, i.e., 
it can handle variable precision logic with respect to specificity. The most efficient and 
easy to understand underlying rule structures to support the discovery of the hierarchical 
classification rules are HPRs (Al-Maqaleh & Bharadwaj, 2005; Bharadwaj & Saroj, 
2009; Bharadwaj & Kandelwal, 2007), HCPRs (Bharadwaj & Jain, 1992) and FHCPRs 
(Neerja & Bharadwaj, 1996). Hierarchical multi-label classification is another complex 
challenging task that requires discovery of rules in hierarchical form. In hierarchical 
multi-label classification problems, an instance is assigned to more than one classes 
out of hundreds or thousands of the classes (Cerri et al., 2012). Popular examples of the 
hierarchical multi-label classification problems are the task of text classification (Rousu 
et al., 2006; Sun et al., 2004; Sun & Lim, 2001) and protein function prediction (Cerri et 
al., 2013; Sun et al., 2004).
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Another important aspect of real world knowledge is interestingness which has 
been given considerably focus in the data mining literature. Silberschatz and Tuzhilin 
(Kontonasios et al., 2012; Silberschatz & Tuzhilin, 1996; Silberschatz & Tuzhilin, 1995) 
had dealt with the issue of interestingness. They had considered the exceptions as interesting 
pieces of knowledge that challenged the common beliefs. Suzuki and colleagues (Suzuki, 
2002; Suzuki, 2004; Suzuki & Shimura, 1996; Suzuki & Zytkow, 2000) had done extensive 
work in the domain of exception discovery. They had classified exceptions in several 
categories and discovered exceptions in the form of rule pairs and rule triplets. They had 
addressed the task of dependence modeling, and their algorithm discovered a large number 
of exceptions, which made the discovered knowledge unsuitable for human insight and 
analysis. A classification algorithm based on the evolutionary approach for discovering 
comprehensible rules with exceptions in the form of Censored Production Rules (CPRs) 
is presented in (Bharadwaj & Al-Maqaleh, 2007a). A genetic algorithm approach has 
also been proposed to discover Fuzzy Censored Classification Rules in (Bala, 2012). A 
genetic programming-based intelligent miner has also been proposed to mine rules with 
fuzzy hierarchies with exceptions at every level (Bharadwaj & Saroj, 2010; Bharadwaj & 
Al-Maqaleh, 2007b). Vashishtha et al. (2013) had discovered classification rules with intra 
and inter-class exceptions. However, their algorithm was designed to work with datasets 
containing discretized /nominal attributes only. Another contribution for discovering 
exceptions has been made to discover tuned fuzzy classification rules with Intra and 
inter-class exceptions (Bala & Ratnoo, 2016). In this work, each attribute is fuzzified by 
finding an optimal combination of the type of MFs (triangular, trapezium) and the number 
of linguistic terms (varying from 1 to 5). In this research work, we take up the task of 
discovering knowledge in the form of FHCCRs using a genetic algorithm approach.

THE PROPOSED SYSTEM

This section describes the proposed approach for discovering FHCCRs in a step by step 
manner. It includes a pre-processing step to fuzzify the attributes, a genetic algorithm to 
discover FHCCRs and a post-processing step to merge FHCCRs into FHCCR trees. The 
overall flow chart of the proposed system is shown in Figure 3.

Fuzzification Process

The dataset is normalized by using the following formula in Equation 1.

𝐴𝑖𝑗′ =
𝐴𝑖𝑗 −𝑚𝑖𝑛 𝐴𝑗

𝑚𝑎𝑥 𝐴𝑗 −𝑚𝑖𝑛 𝐴𝑗
     [1]

A’ij is the normalized value of the jth attribute of the ith instance. After normalization the 
dataset is fuzzified by applying algorithm given by Bala and Ratnoo (2016). This algorithm 
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produces optimal fuzzy partitions for attributes in relation to class labels. For each attribute, 
it selects an optimal combination of a Fuzzy Membership Function  (FMF) and the number 
of linguistic partitions out of a given set of FMFs (i.e., Triangular and Trapezium) and a 
given set of linguistic partitions (i.e.,2:(small, medium), 3:(small, medium large), 4: (small 
medium, medium large), 5:(small, small medium, medium, medium Large, Large)). The 
algorithm computes the gain ratio for all the possible combinations of FMFs and number 
of linguistic partitions for an attribute using the following Equation 2:

𝐺𝑅 𝐴𝑘 = 𝐼𝐺 𝐴𝑘

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜 𝐴𝑘
      [2]

Measuring Goodness of Hierarchies

This section explains the use of the degree of subsumption and the coefficient of similarity 
to quantify the goodness of hierarchies.

Degree of Subsumption. Degree of subsumption is a quantitative measure to decide the 
hierarchical relation of generality/specificity among the classes. To compute the degree of 
subsumption between two classes Ck and Cs, first, we need to spot their defining properties.
The defining properties for the class Ck are the distinct linguistic labels (i.e., small, medium 

Discover Fuzzy Classification Rules (FCRs) by employing Crowding GA (Figure 2)

Start

Input  Data

Normalize data and fine tune  fuzzy membership functions and number of fuzzy partitions

Discover Fuzzy Censored Classification Rules (FCCRs) by applying mutation only to those  
attributes which are not present in the premise of FCRs

Apply GA for appending FCCRs with their general and specific classes for discovering 
FHCCRs by using Degree of Subsumption and Coefficient of Similarity to evaluate the 

goodness of hierarchies

Merge individual FHCCRs into FHCCRs trees to create the final fuzzy Rule Base.

Stop

Figure 3. Flowchart for the overall process of the proposed system
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and large), for the attributes of a given dataset, which have recalled more than a user-defined 
threshold value (θt) with respect to the class Ck (Bharadwaj & Saroj, 2009; Bharadwaj & 
Kandelwal, 2007). The values for recall, denoted by x and y, for the ith property in the class 
Ck and jth property in the class Cs  are computed as below in equations 3 and 4:

𝑥𝑖 =
 |(𝜇(𝑃𝑖) 𝛼 ∧ 𝐶𝑘)|

|𝐶𝑘|
     [3]

 𝑦𝑗 =
 |(𝜇(𝑃𝑗) 𝛼 ∧ 𝐶𝑠)|

|𝐶𝑠|
     [4]

The value of α  needs to be greater than 0.51. This value has been chosen through 
experimental tuning. The set of defining properties S(Ck) and S(Cs) for the classes Ck and 
Cs are captured as Equation 5 and 6 below:

𝑆 𝐶𝑘 = ∀𝑃𝑖 ∈ 𝑈;   𝑥𝑖 > 𝜃𝑡      [5]

 𝑆(𝐶𝑠) = ∀𝑃𝑗 ∈ 𝑈;   𝑦𝑗 > 𝜃𝑡      [6]

The subsumption between ith and jth properties of defining sets S(Ck) and S(Cs) is 
computed by using following Equation 7, 8 and 9.

𝑠𝑢𝑏𝑠𝑢𝑚𝑒(𝑆(𝐶𝑘(𝑖)), 𝑆(𝐶𝑠(𝑗)) = 1       𝑖𝑓(𝑥 ≤ 𝑦) 𝑎𝑛𝑑 (𝑖 = 𝑗) [7]

𝑠𝑢𝑏𝑠𝑢𝑚𝑒(𝑆(𝐶𝑘(𝑖)), 𝑆(𝐶𝑠(𝑗)) = 𝑦       𝑖𝑓(𝑥 > 𝑦) 𝑎𝑛𝑑 (𝑖 = 𝑗)  [8]

𝑠𝑢𝑏𝑠𝑢𝑚𝑒(𝑆(𝐶𝑘(𝑖)),𝑆(𝐶𝑠(𝑗)) = 0       𝑖𝑓 (𝑖 ≠ 𝑗)  [9]

The overall subsumption between the two classes is given by Equation 10:

𝑑𝑒𝑔 𝑟 𝑒𝑒_𝑠𝑢𝑏𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝐶𝑘,𝐶𝑠) = � �
𝑠𝑢𝑏𝑠𝑢𝑚𝑒(𝑆(𝐶𝑘(𝑖)),𝑆(𝐶𝑠(𝑗)))

|𝑆(𝐶𝑘)|

|𝑆(𝐶𝑠)|

𝑗=1

|𝑆(𝐶𝑘)|

𝑖=1

        [10]

Here, we are calculating overall subsumption degree between every pair of the classes. 
Therefore, double summation is applied. 

A subsumption matrix can be prepared using Equation 11. tsθ denotes the threshold 
value for the degree of subsumption which is kept at 0.6.
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        [11]

Coefficient of Similarity

A coefficient of similarity is required to decide the hierarchy among those classes whose 
subsumption degree is same both ways. The coefficient of similarity (S) of attributes 
between two classes Ck and Cs is defined on the basis of a 2× 2 contingency table (Table 1).

Table 1
Contingency table

S(Ck)(C1)
        ↓

S(CS)(C2) →
Observed Not observed

Observed p q
Not observed r s

𝜒2 =
𝑁 𝑝𝑠 − 𝑞𝑟 2

𝑀       [12]

𝑁 = 𝑝 + 𝑞 + 𝑟 + 𝑠       [13]

𝑀 = (𝑝 + 𝑞) (𝑟+ 𝑠) (𝑝 + 𝑟) (𝑞+ 𝑠)    ǁ14ǁ

𝑆 =
𝜒2

𝑁 𝑘 − 1
      [15]

In the above Equation 12, 13, 14 and 15, N is the total number of properties 
present; k is the degree of freedom. Degree of freedom is the number of independent 
quantities in the final calculation of a stastical distribution and it is calculated by 
𝑘 = (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑜𝑤𝑠 − 1) × (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑙 − 1). For a two by two contigency table the 
degree of freedom is 1. The value of S shall always lie between 0 and 1. Higher the value 
of S, more is the similarity between the classes involved (Bharadwaj & Saroj, 2009; 
Bharadwaj & Kandelwal, 2007).  

A similarity matrix can be prepared by using Equation 16. simθ , in Equation 16 
represents the threshold for coefficient of similarity which is taken as 0.6.

𝑖,𝑗=1….𝑛
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𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑚𝑎𝑡𝑟𝑖𝑥 𝐶𝑖 ,𝐶𝑗
𝑖 ,𝑗=1... ..𝑛

=
 1 𝑖𝑓  𝑖 == 𝑗
 0  𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐶𝑖 ,𝐶𝑗 < 𝜃𝑡𝑠𝑖𝑚
 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐶𝑖 ,𝐶𝑗    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 [16]

The coefficient of similarity is helpful in deciding the hierarchy between the classes 
when a general class subsumes two classes with the same degree of subsumption. 

The Genetic Algorithm Design

This section describes the proposed GA approach to discover FHCCRs. It illustrates 
encoding scheme, generation of the initial population, fitness function and genetic operators.

Individual’s Encoding. A set of four consequent blocks encodes the hierarchical 
chromosome with exceptions, as a candidate solution. The first block represents default 
rule, i.e., FCR. The second block captures the censor/exceptional condition(s) along with 
the class which gets predicted when censor conditions are satisfied. The third block contains 
the general class and the fourth block holds the specific classes. Two constraints that need 
to be enforced on individual FHCCRs are – 1) The properties present in the premise and 
exceptional parts are mutually exclusive and; 2) The rule class, the general class and the 
specific classes need to be all distinct.

Figure 4 shows the encoding of two chromosomes and their mapping to the 
corresponding FHCCRs. We have adopted the Michigan approach with a pure binary string 
for encoding the premise part of a chromosome. A block of n bits signifies n consecutive 
linguistic fuzzy variables in the order- ‘small’, ‘small-medium’, ‘medium’, ‘medium-large’ 
and ‘large’. Within a block, a ‘1’ bit marks the presence of the corresponding linguistic 
term, whereas a ‘0’ bit denotes its absence. A block with all bits set to 1 or 0 is treated as a 
‘don’t care’ state which indicates the absence of an attribute from the rule. The consequent 

Block 1 Block 2 Block 3 Block 4
A1 A2 A3 A4 A5 Class A6 A7 Censor class Generality Specificity
10 010 0010 10 00000 2 00010 0100 7 1 4    5    0
A1 A2 A3 A4 A5 Class A6 A7 Censor Generality Specificity
10 010 0010 01 00000 3 00001 1000 8 1 6   00

Genotype (Chromosomes)

If (A1 is small ) ∧   (A2 is medium) ∧  (A3 is medium-large) ∧  (A4 is small)→ C2¬  (A6 is medium-
large) ∧ (A7 is small-medium) : C7; Generality[C1]  Specificity[C4,C5]
If (A1 is small) ∧  (A2 is medium) ∧  (A3 is medium-large) ∧ (A4 is large) →C3 ¬ (A6 is large)∨ (A7 is 
small) : C8; Generality[C1]  Specificity [C6]

Phenotype (FHCCR)

Figure 4. Encoding scheme
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part contains the class label of the rule. The second block follows a similar strategy to 
represent exceptions and their corresponding classes. The attributes in block 1 and block 
2 are mutually exclusive as per the first constraint. The Generality part contains the label 
for the general class of the rule. The next block consists of three bits – each for one of the 
specific classes - which indicates that there are at most three specific classes.

Initial Population. Initially, a set of FCRs is generated from data using the algorithms 
“Evolving FCRs” and “Crowding” given in Bala and Ratnoo (2016). This first phase of 
the design discovers a set of FCRs which occupies the first block of the FHCCRs. The 
second phase transforms the FCRs into a set of FCCRs based on the algorithm given in 
Saroj and Bharadwaj (2007) , and modified for discovery of fuzzy rules. 

The third phase of the design creates an initial population of the FHCCRs by appending 
classes randomly to the generality and specificity parts of the pre-discovered FCCRs. The 
number of possible combinations in the generality and specificity parts increases with 
the rise in the number of classes present in the dataset. Hence, we have applied a genetic 
algorithm to fix the general and specific classes of FHCCRs in an optimal way.

Fitness Evaluation. Fitness function gives the quantitative measure to evaluate the quality 
of FHCCRs in the population. In the proposed approach, the degree of Subsumption and 
the similarity coefficient, already described in section of measuring goodness of hierarchies 
are used to evaluate the fitness of an individual. The fitness function is given below:

If (Generality = empty and Specificity= empty) then

𝐹𝑖𝑡𝑛𝑒𝑠𝑠=
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛× 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙

Else

𝐹𝑖𝑡𝑛𝑒𝑠𝑠1 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛× 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙 // Fitness of the first block of FHCCR

𝐹𝑖𝑡𝑛𝑒𝑠𝑠2 = 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛× 𝑟𝑒𝑐𝑎𝑙𝑙 // Fitness of the second block of FHCCR

// Fitness of generality and specificity parts
𝐹𝑖𝑡𝑛𝑒𝑠𝑠3
= 𝑆𝑢𝑏𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝐶𝑔,𝐶𝑘 × 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐶𝑔,𝐶𝑘

+�𝑆𝑢𝑏𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝐶𝑘,𝐶𝑠𝑖 ×𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐶𝑘,𝐶𝑠𝑖)
3

𝑖=1

 
𝐹𝑖𝑡𝑛𝑒𝑠𝑠3
= 𝑆𝑢𝑏𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝐶𝑔,𝐶𝑘 × 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐶𝑔,𝐶𝑘

+�𝑆𝑢𝑏𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝐶𝑘,𝐶𝑠𝑖 ×𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐶𝑘,𝐶𝑠𝑖)
3

𝑖=1

𝐹𝑖𝑡𝑛𝑒𝑠𝑠= 𝐹𝑖𝑡𝑛𝑒𝑠𝑠1 + 𝐹𝑖𝑡𝑛𝑒𝑠𝑠2 + 𝐹𝑖𝑡𝑛𝑒𝑠𝑠3

We have considered a maximum of three classes in the specificity part. The subsumption 
and similarity matrices are computed in advance from the set of FCCRs in the initial 
population to save the overhead of computation of these two measures again and again 
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for each FHCCR generated during the evolutionary process. Two FHCCRs that can be 
generated from the FCCRs given in the initial population are shown in the Figure 5. The 
fitness computations are also depicted in this Figure 5.

A1 A2 A3 A4 A5 Class A6 A7 Censor 
Class Generality Specificity

10 010 0010 10 00000 2 00010 0100 7 1 4    5    0
Precision=0.36      Recall=0.66    

Fitness1=0.465
Censor_precision=0.09  

Censor_recall=1 Fitness2=0.09
Fitness3=1.9455

Total Fitness= 2.5005

A1 A2 A3 A4 A5 Class A6 A7 Censor 
Class Generality Specificity

10 010 0010 01 00000 3 00001 1000 8 1 6     0     0

Precision= 0.5    Recall=1  Fitness1=0.667
Censor_precision=0.083  

Censor_recall=1 
Fitness2=0.083

Fitness3=1.4613  
Total Fitness=2.2113

Figure 5. FHCCRs generated from intial FCCR and their fitness evaluation

Genetic Operators. Tournament selection is used as the selection operator. The selection 
is restricted to Intra-species (individuals of same class) individuals since inter-species 
(individuals of different classes) individuals create low fitness offspring after applying 
crossover. New offspring are created from the selected ones by employing one point 
crossover and flip mutation. Cross breeding is done on the generality and specificity parts 
of the individuals of the same species. The mutation operator generates a new offspring by 
mutating generality and specificity blocks of an individual. The algorithm uses pre-selection 
technique to maintain diversity, i.e., the better fit offspring replace their parents. Figure 6 
shows the overall genetic algorithm approach for discovering FHCCRs.

Post-processing Scheme

The average number of defining properties in a rule is given by following Equation 17:

𝐴𝐷𝑃 =
1
𝑁� |𝑝𝑟𝑜𝑝 𝑅𝑖

𝑁

𝑖=1
|     [17]

Where N is the number of rules and prop (Ri) is the number of defining properties for 
the ith  rule. 

Here, we are presenting a post processing scheme in which small and related hierarchies 
can be merged together to form bigger hierarchies in order to reduce redundancy and 
increase interpretability. The scheme is as follows:

1. If an FHCCR is already a part of a bigger hierarchy, then the bigger FHCCR is 
retained and the smaller one is dropped. 
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2. If two FHCCRs have a common general class, but different specific classes, then 
these two FHCCRs are merged into a single hierarchy. 

3. Two different hierarchies will be merged only and only if the threshold criteria 
for the degree of subsumption and coefficients of similarity are satisfied. These 
threshold values are kept at 0.6 for our experimentation. 

After post processing step the related hierarchies are merged together and the redundant 
rules have been subsumed by the general rules. 

The post processing scheme reduces the average number of defining properties 
significantly and hence the knowledge represented by the FHCCR tree is more compact 
and interpretable.

EXPERIMENTAL SETUP AND PERFORMANCE EVALUATION

The proposed approach was validated on five datasets. The Land-Transport dataset was 
taken from Bala and Ratnoo (2018), and it was further extended to include exceptions as 
well. Rests of the four datasets were from UCI machine learning repository. Table 2 shows 
the description of the datasets with respect to the number of attributes, number of classes 
and total instances. All the datasets had continuous attributes without any missing values. 

Figure 6. The Genetic Algorithm to discover FHCCRs 

Algorithm: Discovering Fuzzy Hierarchical Censored Classification Rules (FHCCRs)
Input: Set of FCCRs, Population Size = 500; Mutation Rate = 0.1; Crossover Rate = 0
Output: A set of FHCCRs
Begin

1. Evolve FCRs from data using Algorithms ‘Evolving FCR’ and ‘Crowding’..
2. Discover FCCRs from the pre-discovered set of FCRs.
3. Construct Subsumption and Similarity Matrices from the pre-discovered set of FCCRs
4. Initialize random population P0 of FHCCRs using set of FCCRs and generate random classes for 

generality and specificity parts
5. Evaluate Fitness of the population P0

6. While stopping criteria not satisfied
Begin
6.1 Select two individuals i1 and i2 of same species
6.2 Apply crossover and mutation to produce new individuals i’1 and i’2//keeping the rule and censor 

parts fixed
6.3 Compute fitness of i’1 and i’2

6.4 If fitness of i’1 > fitness of i1

 6.4.1 Replace i1 in Pi with i’1

End if
6.5 If fitness of i’2 > fitness of i2

 Replace i2 in Pi with i’2

End if
End while

End.
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Table 2
Description of datasets

Dataset Attributes Classes Instances
Land-Transport 7 11 151
Hglass 9 6 214
E.coli 7 8 336
Yeast 8 10 1484
Vehicle 18 4 846

The datasets were normalized and fuzzified as described in the pre-processing step. 
Fuzzification of attributes had been carried out using the algorithm proposed in Bala & 
Ratnoo (2016). The resulting fuzzy partitions obtained for the attributes of different datasets 
are given in Table 3.

After fuzzifying the attributes, FHCCRs are discovered in three phases as described 
below: 

1. In the first Phase, FCRs are discovered by using the algorithms ‘Evolving_FCRs’ 
and ‘Crowding’ proposed in (Bala & Ratnoo, 2016) as mentioned earlier. These 
FCRs occupy the first part of FHCCRs representation. We have compared the 
accuracy and number of rules discovered by the classifiers containing FCRs with 
those obtained from Decision table, JRIP, PART and J48 classifiers available in 
WEKA. (Witten et al., 2011).  These classifiers are chosen since they produce 
rules in “If-Then’ form which are comparable with the rules discovered in the form 
of FCRs. All these classifiers are applied with their default settings provided in 
WEKA. The results have been taken with tenfold cross validation sampling method 
across all the datasets and classifiers. Table 4 compares the results averaged over 
ten folds. 
The table shows that FCRs perform significantly better than the other classifiers 
on four datasets (Land-Transport, Hglass, E-coli and Yeast), but it fails to do 
better on one dataset (Vehicle). For Vehicle dataset, the PART algorithm obtains 
the highest accuracy, however, it discovers many rules (29) as compared to the 
number of rules (7) discovered by the classifier consisting of FCRs. This reflects 
the tarde off between accuracy and number of rules discovered. Overall, JRip and 
the classifier containing FCRs discover lesser number of rules. As RBs with less 
number of rules are considered more interpretable (García et al., 2008), JRip and 
FCRs perform significantly better on this metric. 

2. In the second phase of the design, FCRs have been converted to FCCRs based 
on algorithm given in (Saroj & Bharadwaj, 2007). The algorithm is modified for 
fuzzy rules. The exceptions/censors discovered in this phase are accommodated in 
the second part of the FHCCRs representation. We have compared the accuracy of 



A GA Approach for FHCCRs Discovery

107Pertanika J. Sci. & Technol. 28 (1): 91 - 116 (2020)

Table 3
Attribute-wise Fuzzy partitions for datasets 

Attributes FMF Linguistic terms Attributes FMF Linguistic terms
Dataset: Land_Transport

1. Weight Low, Medium, High 5. Boot-Space Low, Low-medium, 
Medium-high, High

2. Mileage Low, Medium, High 5. Fuel-capacity Low, Medium, High

3. Width Low, Medium, High 6. Power Low, low-medium, 
Medium-high, High4. Length Low, Medium, High

Dataset: Hglass
1. Refractive 
Index (RI)

Low, High 6. Potassium (K) Low, High

2. Sodium(Na) Low, High 7. Calcium (Ca) Low, Low-medium, 
Medium-high, High

3. Magnesium 
(Mg)

Low, High 8. Barium (Ba) Low, Low-medium, 
Medium-high, High

4. Aluminium 
(Al)

Low, High 9. Iron (Fe) Low, High

5. Silicon (Si) Low, Medium, High

Dataset:E-coli
1. mcq Low, High 5. Vac Low, Medium, High
2. Gvh Low, High 6. Alm1 Low, High

3. Lip Low, High 7. Alm2 Low, High

4. Cb Low, High

Dataset: Yeast
1. Mcq Low, High 5. Eri Low, High

2. Gvh Low, High 6. Pox Low, High
3. Alm Low, Medium, High 7. Vac Low, Low-medium, 

Medium-high, High
4. Mit Low, High 8. Mv Low, Low-medium, 

Medium-high, High
Dataset: Vehicle

1. Radius Ratio Low, Medium, High 7.Scaled Variance 
along major axis

Low, High

2. PR Axis aspect 
Ratio

Low, High 8. Scaled Variance 
along minor axis

Low, Medium, High

3. Max length 
Aspect Ratio

Low, Low-medium, 
Medium, Medium-high, 
High

9. Skewness about 
major axis

Low, Medium, High

4. Scatter Ratio Low, Low-medium, 
Medium-high, High

10. Skewness about 
minor axis

Low, High

5. Elongatedness Low, High 11. Kurtosis about 
minor axis

Low, High
6. PR Axis 
Rectangularity

Low, Medium, High
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FCRs and FCCRs (Fuzzy Classification Rules with Censors/Exceptions) in Table 5. 
The results illustrate that the accuracy slightly increases when exceptions/censors 
get appended to the default rules. This is so because exception/censor conditions 
decrease false positive (FP) rate and increase True Negative (TN) rate. The results 
in Table 5 show that exceptions have been discovered for all the datasets except 
E-coli. Discovering exceptions may not increase accuracy to a great extent, but 
their discovery is interesting because knowing exceptions gives us a chance to 
revise our decisions in those rare circumstances where the default rules become 
inapplicable.

3. FCCRs are converted into FHCCRs in the third phase by appending the respective 
general and specific information to the FCCRs. The Initial population of FHCCRs 
is generated by appending general and specific classes randomly among the FCCRs. 
The fitness of individuals in the population is calculated from the subsumption 
and similarity matrices. The crossover and mutation operators are applied only to 
the generality and specificity parts of the initial FHCCRs. Table 6 gives the GA 
parameters employed to discover FHCCRs. 

The additional stopping criteria adopted was of no change in the fitness of individuals 
for last 10 generations. The FHCCRs discovered for the ‘Land transport’ dataset along 
with their fitness values are shown in Table 7.

Table 4
Comparisonon the basis of accuracy and number of rules

Algorithm/ 
Dataset

Decision table JRip PART J48 Classifier (FCR)

Acc. No of 
Rules Acc. No of 

Rules Acc. No of 
Rules Acc. No of 

Rules Acc. No of 
Rules

Land-
Transport 39.07 15 43.7 8 49.67 17 54.30 25 67.62 13.2

Hglass 68.22 38 69.62 8 68.22 14 66.82 30 83.59 7.5
E.coli 75.29 18 80.35 8 79.46 13 84.22 22 87.59 8.1
Yeast 53.77 109 57.82 15 53.5 132 55.86 185 72.57 10
Vehicle 61.82 62 63.71 16 68.68 29 68.20 61 60.58 7.1

Table 5
Comparison of accuracy of FCCRs with accuracy of FCRs

Dataset Accuracy without Exceptions Accuracy with Exceptions No of Exceptions
Land-Transport 67.62 71.63 2
Hglass 83.59 84.25 1
E.coli 87.59 87.59 0
Yeast 72.57 73.45 1
Vehicle 60.58 60.70 1
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Table 6
GA parameters used for discovery of FHCCRs

Population Size 20*no. of FCCRs discovered
Crossover rate 0.6
Mutation rate 0.1
Maximum number of generations 50

Table 7
FHCCRs discovered for ‘Land-transport’ dataset

FHCCRs Fitness1 Fitness2 Fitness3 Total 
Fitness

If (Weight is low) ∧  (Width is low) ∧  (Length is low) 
∧  (Boot_space is low) ¬  (Fuel_capacity is low) Then 
Two-wheeler¬  (Power is medium-high) :  (Sports-bike);  
Generality []  Specificity [Scooter, Bike]

0.5 0.085 1.592 2.177

If (Weight is medium) ∧  (Mileage is low) ¬  (Width is 
medium) Then Car  ¬ (Length is medium∨ power is high) : 
(Sports-car); Generality[] Specificity [Small-car, Big-car]

0.376 0.037 1.541 1.954

If (Weight is low) ∧  (Mileage is medium) ∧  (Width is low) 
∧  (Length is low) ∧  (Boot_space is low) ∧  (Fuel_capacity 
is low) ∧  (Power is low) Then Scooter; Generality [Two-
wheeler] Specificity[]

0.733 0 0.796 1.530

If (Weight is low) ∧  (Mileage is high) ∧  (Width is low) ∧  
(Length is low) ∧  (Boot_space is low) ∧  (Fuel_capacity is 
low) ∧  (Power is low) Then Bike; Generality [Two-wheeler] 
Specificity []

0.8 0 0.796 1.596

If (Weight is medium) ∧  (Mileage is low) ∧  (Width 
is medium) ¬  (Length is medium) Then Small-car ¬  
(Power is high) : (Sports-car); Generality [Car] Specificity 
[Hatchback]

0.52 0.108 2.497 3.125

If (Weight is medium) ∧  (Mileage is low) ∧  (Width is 
medium) ∧  (Length is high) ∧ (Power is low-medium)Then 
Big-car;  Generality [Car] Specificity [Sedan, SUV]

0.455 0 1.575 2.031

If (Weight is medium) ∧  (Mileage is low) ∧  (Width is 
medium) ∧  (Length is medium) ∧  (Fuel_capacity is 
low-medium) Then Hatchback;  Generality[Small-car] 
Specificity[]

0.733 0 0.820 1.553

In this table, the first column lists FHCCRs, the second column gives the fitness of 
the FCRs, the third column denotes the fitness of censor part and the fourth column gives 
the fitness of FHCRs. Finally, the fifth column provides the fitness of entire FHCCRs. 
The proposed algorithm has discovered 11 FHCCRs. The set of FHCCRs discovered are 
shown pictorially in Figure 7. 
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The post-processing step consolidates these FHCCRs into bigger hierarchies to further 
reduce the redundancy as described in post-processing scheme. Figure 8 shows the complete 
hierarchy for ‘Land-Transport’ dataset along with the defining properties. The bold dashed 
circle at the top level of the hierarchy represents the most abstract class which can be added 
by human intervention. 

Table 8 gives the number of FHCCRs discovered, average number of defining properties 
before and after post-processing, size of hierarchy and number of exceptions discovered.

The fifth column of the table shows the size of hierarchies along with the number of 
classes encountered at each level. For ‘Land-transport’ dataset, two classes have been 

Figure 7. FHCCRs discovered for Land-Transport dataset

Table 7 (continue)

FHCCRs Fitness1 Fitness2 Fitness3 Total 
Fitness

If (Weight is medium) ∧  (Mileage is low) ∧  (Width is 
medium) ∧  (Length is high) ∧  (Boot_space is medium-
high) ∧ (Power is low-medium) Then Sedan; Generality 
[Big-car] Specificity[]

0.722 0 0.887 1.609

If (Weight is medium) ∧  (Mileage is low) ∧  (Width is 
medium) ∧  (Length is high) ∧  (Boot_space is Low-
medium) ∧ (Power is low-medium) Then SUV Generality 
[Big-car] Specificity []

0.571 0 0.837 1.408

If (weight is low) ∧ (Mileage is low) ∧ (Width is low) ∧
(Length is low) ∧ (Boot-space is low) ∧ (Fuel-capacity is 
low) ∧ (Power is medium-high) Then Sports-bike; Generlity 
[Two-wheeler] Specificity []

0.667 0 0.796 1.463

If (weight is medium) ∧ (Mileage is low) ∧ (Width is 
medium) ∧ (Length is medium) ∧ (Power is high) Then 
Sports-car; Generality[Car] Specificity []

0.5 0 0.870 1.370
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encountered at first level, five classes at second level and four classes at third level. The 
last column shows the number of censors discovered at each level. The results show that 
merging of FHCCRs into bigger hierarchies reduces the average number of defining 
properties per rule significantly and hence reduces the redundancy in rule representation 
making them more interpretable. This reduction depends upon the size of hierarchies. 
Bigger a hierarchy is, more is the reduction in the average number of defining properties.

Figure 8. Complete hierarchical structure among classes of Land-transport dataset

 

Table 8
Properties of FHCCRs for different datasets

Dataset No. of 
FHCCRs

Avg. Defining 
properties before 
Post-processing

Avg. Defining 
properties after Post-

processing

Size of 
Hierarchy

No of censors/
Exceptions

Land-
transport 11 5.8 1.8 3: (2, 5, 4) 0, 2, 1

Hglass 6 7.6 4.6 2: (3, 3) 1, 0
Ecoli 8 5.8 5.2 2: (7, 1) 0, 0, 0
Yeast 10 6.8 3.9 2: (5, 5) 2, 1
Vehicle 4 6.0 6.0 0 0
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The proposed algorithm discovers concise, complete and interpretable rules in a 
hierarchical form for FRBs. It can classify objects at different levels of specificity. It also 
contains exceptions to the rules which enhance confidence in making decisions.

CONCLUSION AND FUTURE SCOPE

In this paper, we have proposed discovering Fuzzy Hierarchical Censored Classification 
Rules (FHCCRs) through genetic algorithm approach. The suggested approach has 
discovered FHCCRs in three phases. The first phase discovers FCRs which are, subsequently, 
converted into FCCRs and FHCCRs in the second and third phases respectively. The 
suggested approach has successfully captured the exceptions and hierarchical relationship 
in the class labels in the form of FHCCRs. Two measures- degree of subsumption and 
coefficient of similarity- have been used in the fitness function to measure the goodness of 
hierarchical relations. We have merged the individual FHCCRs to form larger hierarchies in 
a post processing step. This step has further organized the discovered knowledge in a more 
concise and non-redundant form because common properties among rules do not need to 
be repetitively represented and the specific classes inherit properties of the general classes.

Discovery of FHCCR trees is a contribution to form Fuzzy Rule Base Systems (FRBS) 
that are more accurate, interpretable and interesting. In addition, such FRBSs support 
variable certainty and specificity while drawing inference, i.e., these RBs are capable of 
taking corrective measures in the presence of censor/exceptional conditions, and classifying 
knowledge at multiple levels of abstraction. Since, FHCCRs have the capabilities to reason 
with incomplete and uncertain premises, to classify examples/objects at different levels 
of specificity and to take appropriate actions in exceptional circumstances; these have 
applications in the domains like robotics where human like adaptive decision making is 
required. This work can as well be extended to make multi-label classifications in the fields 
such as Bioinformatics and disease diagnosis where knowledge is commonly organized 
in a hierarchal manner.
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